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Problem 5

SZABÓ Attila 11th Grade
Leőwey Klára High School
Pécs, Hungary

Let the vertices of the connection be numbered as shown in the figure. Let the potential of the kth
vertex be uk, the current flowing from the kth vertex towards the 0th vertex ik, while the current flowing
from the kth vertex to the (k+ 1)th one (modulo 4, of course) ik+4 (positive is the current when flowing
in the branch in the mentioned direction). The following differential equations between the currents and
voltages for specific circuit elements are well-known:

(1) u1 − u2 = L1
di5
dt

(2) u2 − u3 = L1
di6
dt

(3) u3 − u4 = L2
di7
dt

(4) u4 − u1 = L2
di8
dt

(5) i1 = C1
d(u1 − u0)

dt

(6) i2 = C1
d(u2 − u0)

dt

(7) i3 = C2
d(u3 − u0)

dt

(8) i4 = C2
d(u4 − u0)

dt .

From the first law of Kirchhoff the following equations can be got:

(9) i1 = i8 − i5

(10) i2 = i5 − i6

(11) i3 = i6 − i7

(12) i4 = i7 − i8.

It is easy to see, that this system is linear, so it has definite eigenfrequencies. In order to find them, we
assume that all quantities depend on time as x = Xeiωt, where ω denotes the angular eigenfrequency
(they always occur in pairs (ω,−ω), this can be considered as phase difference). Using this substitution
in Eqs 1–12, and simplifying with eiωt gives the following equations:

(1) U1 − U2 = iωL1I5

(2) U2 − U3 = iωL1I6

(3) U3 − U4 = iωL2I7

(4) U4 − U1 = iωL2I8

(5) I1 = iωC1(U1 − U0)

(6) I2 = iωC1(U2 − U0)

(7) I3 = iωC2(U3 − U0)

(8) I4 = iωC2(U4 − U0)

(9) I1 = I8 − I5

(10) I2 = I5 − I6

(11) I3 = I6 − I7

(12) I4 = I7 − I8.

From Eqs 5–8 the values of Ui − U0, consequently Ui − Ui+1 can be determined in terms of Ii, which
can be equated with the values from Eqs 1–4. For example,

U1 − U2 = (U1 − U0) − (U2 − U0) = I1

iωC1
− I2

iωC1
= iωL1I5

I8 − I5

iωC1
− I5 − I6

iωC1
= iωL1I5

(13) − 2
C1L1

I5 + 1
C1L1

I6 + 1
C1L1

I8 = −ω2I5.

The same calculation for other Iks gives

(14) −
(

1
C1L1

+ 1
C2L1

)
I6 + 1

C1L1
I5 + 1

C2L1
I7 = −ω2I6
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(15) − 2
C2L2

I7 + 1
C2L2

I6 + 1
C2L2

I8 = −ω2I7

(16) −
(

1
C1L2

+ 1
C2L2

)
I8 + 1

C1L2
I5 + 1

C2L2
I7 = −ω2I8.

The eqs 13–16 can be written together in the matrix form
− 2

C1L1
1

C1L1
0 1

C1L1
1

C1L1
−
(

1
C1L1

+ 1
C2L1

)
1

C2L1
0

0 1
C2L2

− 2
C2L2

1
C2L2

1
C1L2

0 1
C2L2

−
(

1
C1L2

+ 1
C2L2

)



I5
I6
I7
I8

 = −ω2


I5
I6
I7
I8

 .

From this form it is easy to see, that the problem is to find the eigenvalues of the matrix on the left hand
side: these eigenvalues give the values of −ω2. The characteristic equation of the matrix is (with the help
of Maple):

λ4 +
(

1
L1C1

+ 1
L2C1

+ 1
L1C2

+ 1
L2C2

)
λ3 +

(
1

L2
1C

2
1

+ 1
L2

2C
2
2

+ 2
L1L2C2

1
+ 2
L1L2C2

2
+ 2
L2

1C1C2
+

2
L2

2C1C2
+ 10
L1L2C1C2

)
λ2 +

(
4

L2
1L2C2

1C2
+ 4
L2

1L2C1C2
2

+ 4
L1L2

2C
2
1C2

+ 4
L1L2

2C1C2
2

)
λ = 0.

From the equation it is obvious that λ = 0, consequently ω = 0 is a solution: knowing this, we can
divide the equation by λ; in the following, we consider it this way. Now, using the fact that L2 � L1 and
C2 � C1, we can ignore the terms containing 1

L2
and 1

C2
. This way, the equation becomes

λ3 + 3
L1C1

λ2 + 1
L2

1C
2
1
λ = 0.

0 is obviously the solution of the equation, however, this comes from ignoring terms; the other two
eigenvalues can be got from the quadratic equation λ2 + 3

L1C1
λ + 1

L2
1C2

1
= 0, the roots of which are

λ1 = − 3+
√

5
2

1
L1C1

and λ2 = − 3−
√

5
2

1
L1C1

. Now we have to determine the third root of the equation. From
the previous it can be found, that this λ is ignorable compared to 1

L1C1
; this means that higher-order

terms can be ignored compared to the two least-order one; the equation then becomes (ignoring the terms
ignorable compared to the greatest in each coefficient):

1
L2

1C
2
1
λ+ 4

L2
1L2C2

1C2
= 0

λ3 = − 4
L2C2

.

Now we have all eigenvalues of the matrix of the system; now we’re going to calculate the eigenfrequencies
from λ = −ω2.

λ1 = − 3+
√

5
2

1
L1C1

; from this, ω1 =
√

3+
√

5
2

1
L1C1

= 1+
√

5
2

1√
L1C1

. From λ2 = − 3−
√

5
2

1
L1C1

, ω2 =√
3−
√

5
2

1
L1C1

= 1−
√

5
2

1√
L1C1

comes. Eigenvalue λ3 = − 4
L2C2

gives the eigenfrequency ω3 =
√

4
L2C2

=
2√

L2C2
. We investigate now the case of the fourth eigenfrequency, λ4 = 0: in this case there is a nonzero

eigenvector (1, 1, 1, 1)∗, meaning that a constant current flows round in the outer ring, and there is no
current in the 0th vertex: this is physically able; there is no voltage inducating in the coils, so vertices
1–4 are on the same potential u1, while u0 is independent of this. Thus the angular eigenfrequencies of
the circuit are ω1 = 1+

√
5

2
1√

L1C1
, ω2 = 1−

√
5

2
1√

L1C1
, ω3 = 2√

L2C2
and ω4 = 0.


