Problem 5

SZABÓ Attila 11th Grade

Leőwey Klára High School

Pécs, Hungary

Let the vertices of the connection be numbered as shown in the figure. Let the potential of the k th vertex be u_{k}, the current flowing from the k th vertex towards the 0th vertex i_{k}, while the current flowing from the k th vertex to the $(k+1)$ th one (modulo 4 , of course) i_{k+4} (positive is the current when flowing in the branch in the mentioned direction). The following differential equations between the currents and voltages for specific circuit elements are well-known:
(1) $u_{1}-u_{2}=L_{1} \frac{\mathrm{~d} i_{5}}{\mathrm{~d} t}$
(5) $i_{1}=C_{1} \frac{\mathrm{~d}\left(u_{1}-u_{0}\right)}{\mathrm{d} t}$
(2) $u_{2}-u_{3}=L_{1} \frac{\mathrm{~d} i_{6}}{\mathrm{~d} t}$
(6) $i_{2}=C_{1} \frac{\mathrm{~d}\left(u_{2}-u_{0}\right)}{\mathrm{d} t}$
(3) $u_{3}-u_{4}=L_{2} \frac{\mathrm{~d} i_{7}}{\mathrm{~d} t}$
(7) $i_{3}=C_{2} \frac{\mathrm{~d}\left(u_{3}-u_{0}\right)}{\mathrm{d} t}$
(4) $u_{4}-u_{1}=L_{2} \frac{\mathrm{~d} i_{8}}{\mathrm{~d} t}$
(8) $i_{4}=C_{2} \frac{\mathrm{~d}\left(u_{4}-u_{0}\right)}{\mathrm{d} t}$.

From the first law of Kirchhoff the following equations can be got:
(9) $i_{1}=i_{8}-i_{5}$
(10) $i_{2}=i_{5}-i_{6}$
(11) $i_{3}=i_{6}-i_{7}$
(12) $i_{4}=i_{7}-i_{8}$.

It is easy to see, that this system is linear, so it has definite eigenfrequencies. In order to find them, we assume that all quantities depend on time as $x=X e^{i \omega t}$, where ω denotes the angular eigenfrequency (they always occur in pairs $(\omega,-\omega)$, this can be considered as phase difference). Using this substitution in Eqs $1-12$, and simplifying with $e^{i \omega t}$ gives the following equations:
(1) $U_{1}-U_{2}=i \omega L_{1} I_{5}$
(5) $I_{1}=i \omega C_{1}\left(U_{1}-U_{0}\right)$
(9) $I_{1}=I_{8}-I_{5}$
(2) $U_{2}-U_{3}=i \omega L_{1} I_{6}$
(6) $I_{2}=i \omega C_{1}\left(U_{2}-U_{0}\right)$
(10) $I_{2}=I_{5}-I_{6}$
(3) $U_{3}-U_{4}=i \omega L_{2} I_{7}$
(7) $I_{3}=i \omega C_{2}\left(U_{3}-U_{0}\right)$
(11) $I_{3}=I_{6}-I_{7}$
(4) $U_{4}-U_{1}=i \omega L_{2} I_{8}$
(8) $I_{4}=i \omega C_{2}\left(U_{4}-U_{0}\right)$
(12) $I_{4}=I_{7}-I_{8}$.

From Eqs 5-8 the values of $U_{i}-U_{0}$, consequently $U_{i}-U_{i+1}$ can be determined in terms of I_{i}, which can be equated with the values from Eqs 1-4. For example,

$$
\begin{aligned}
& U_{1}-U_{2}=\left(U_{1}-U_{0}\right)-\left(U_{2}-U_{0}\right)=\frac{I_{1}}{i \omega C_{1}}-\frac{I_{2}}{i \omega C_{1}}=i \omega L_{1} I_{5} \\
& \frac{I_{8}-I_{5}}{i \omega C_{1}}-\frac{I_{5}-I_{6}}{i \omega C_{1}}=i \omega L_{1} I_{5} \\
& (13)-\frac{2}{C_{1} L_{1}} I_{5}+\frac{1}{C_{1} L_{1}} I_{6}+\frac{1}{C_{1} L_{1}} I_{8}=-\omega^{2} I_{5} .
\end{aligned}
$$

The same calculation for other I_{k} s gives
(14) $-\left(\frac{1}{C_{1} L_{1}}+\frac{1}{C_{2} L_{1}}\right) I_{6}+\frac{1}{C_{1} L_{1}} I_{5}+\frac{1}{C_{2} L_{1}} I_{7}=-\omega^{2} I_{6}$
(15) $-\frac{2}{C_{2} L_{2}} I_{7}+\frac{1}{C_{2} L_{2}} I_{6}+\frac{1}{C_{2} L_{2}} I_{8}=-\omega^{2} I_{7}$
(16) $-\left(\frac{1}{C_{1} L_{2}}+\frac{1}{C_{2} L_{2}}\right) I_{8}+\frac{1}{C_{1} L_{2}} I_{5}+\frac{1}{C_{2} L_{2}} I_{7}=-\omega^{2} I_{8}$.

The eqs 13-16 can be written together in the matrix form

$$
\left(\begin{array}{cccc}
-\frac{2}{C_{1} L_{1}} & \frac{1}{C_{1} L_{1}} & 0 & \frac{1}{C_{1} L_{1}} \\
\frac{1}{C_{1} L_{1}} & -\left(\frac{1}{C_{1} L_{1}}+\frac{1}{C_{2} L_{1}}\right) & \frac{1}{C_{2} L_{1}} & 0 \\
0 & \frac{1}{C_{2} L_{2}} & -\frac{2}{C_{2} L_{2}} & \frac{1}{C_{2} L_{2}} \\
\frac{1}{C_{1} L_{2}} & 0 & \frac{1}{C_{2} L_{2}} & -\left(\frac{1}{C_{1} L_{2}}+\frac{1}{C_{2} L_{2}}\right)
\end{array}\right)\left(\begin{array}{c}
I_{5} \\
I_{6} \\
I_{7} \\
I_{8}
\end{array}\right)=-\omega^{2}\left(\begin{array}{c}
I_{5} \\
I_{6} \\
I_{7} \\
I_{8}
\end{array}\right) .
$$

From this form it is easy to see, that the problem is to find the eigenvalues of the matrix on the left hand side: these eigenvalues give the values of $-\omega^{2}$. The characteristic equation of the matrix is (with the help of Maple):

$$
\begin{aligned}
& \lambda^{4}+\left(\frac{1}{L_{1} C_{1}}+\frac{1}{L_{2} C_{1}}+\frac{1}{L_{1} C_{2}}+\frac{1}{L_{2} C_{2}}\right) \lambda^{3}+\left(\frac{1}{L_{1}^{2} C_{1}^{2}}+\frac{1}{L_{2}^{2} C_{2}^{2}}+\frac{2}{L_{1} L_{2} C_{1}^{2}}+\frac{2}{L_{1} L_{2} C_{2}^{2}}+\frac{2}{L_{1}^{2} C_{1} C_{2}}+\right. \\
& \left.\frac{2}{L_{2}^{2} C_{1} C_{2}}+\frac{10}{L_{1} L_{2} C_{1} C_{2}}\right) \lambda^{2}+\left(\frac{4}{L_{1}^{2} L_{2} C_{1}^{2} C_{2}}+\frac{4}{L_{1}^{2} L_{2} C_{1} C_{2}^{2}}+\frac{4}{L_{1} L_{2}^{2} C_{1}^{2} C_{2}}+\frac{4}{L_{1} L_{2}^{2} C_{1} C_{2}^{2}}\right) \lambda=0 .
\end{aligned}
$$

From the equation it is obvious that $\lambda=0$, consequently $\omega=0$ is a solution: knowing this, we can divide the equation by λ; in the following, we consider it this way. Now, using the fact that $L_{2} \gg L_{1}$ and $C_{2} \gg C_{1}$, we can ignore the terms containing $\frac{1}{L_{2}}$ and $\frac{1}{C_{2}}$. This way, the equation becomes

$$
\lambda^{3}+\frac{3}{L_{1} C_{1}} \lambda^{2}+\frac{1}{L_{1}^{2} C_{1}^{2}} \lambda=0 .
$$

0 is obviously the solution of the equation, however, this comes from ignoring terms; the other two eigenvalues can be got from the quadratic equation $\lambda^{2}+\frac{3}{L_{1} C_{1}} \lambda+\frac{1}{L_{1}^{2} C_{1}^{2}}=0$, the roots of which are $\lambda_{1}=-\frac{3+\sqrt{5}}{2} \frac{1}{L_{1} C_{1}}$ and $\lambda_{2}=-\frac{3-\sqrt{5}}{2} \frac{1}{L_{1} C_{1}}$. Now we have to determine the third root of the equation. From the previous it can be found, that this λ is ignorable compared to $\frac{1}{L_{1} C_{1}}$; this means that higher-order terms can be ignored compared to the two least-order one; the equation then becomes (ignoring the terms ignorable compared to the greatest in each coefficient):

$$
\begin{aligned}
& \frac{1}{L_{1}^{2} C_{1}^{2}} \lambda+\frac{4}{L_{1}^{2} L_{2} C_{1}^{2} C_{2}}=0 \\
& \lambda_{3}=-\frac{4}{L_{2} C_{2}}
\end{aligned}
$$

Now we have all eigenvalues of the matrix of the system; now we're going to calculate the eigenfrequencies from $\lambda=-\omega^{2}$.
$\lambda_{1}=-\frac{3+\sqrt{5}}{2} \frac{1}{L_{1} C_{1}} ;$ from this, $\omega_{1}=\sqrt{\frac{3+\sqrt{5}}{2} \frac{1}{L_{1} C_{1}}}=\frac{1+\sqrt{5}}{2} \frac{1}{\sqrt{L_{1} C_{1}}}$. From $\lambda_{2}=-\frac{3-\sqrt{5}}{2} \frac{1}{L_{1} C_{1}}, \omega_{2}=$ $\sqrt{\frac{3-\sqrt{5}}{2} \frac{1}{L_{1} C_{1}}}=\frac{1-\sqrt{5}}{2} \frac{1}{\sqrt{L_{1} C_{1}}}$ comes. Eigenvalue $\lambda_{3}=-\frac{4}{L_{2} C_{2}}$ gives the eigenfrequency $\omega_{3}=\sqrt{\frac{4}{L_{2} C_{2}}}=$ $\frac{2}{\sqrt{L_{2} C_{2}}}$. We investigate now the case of the fourth eigenfrequency, $\lambda_{4}=0$: in this case there is a nonzero eigenvector $(1,1,1,1)^{*}$, meaning that a constant current flows round in the outer ring, and there is no current in the 0th vertex: this is physically able; there is no voltage inducating in the coils, so vertices $1-4$ are on the same potential u_{1}, while u_{0} is independent of this. Thus the angular eigenfrequencies of the circuit are $\omega_{1}=\frac{1+\sqrt{5}}{2} \frac{1}{\sqrt{L_{1} C_{1}}}, \omega_{2}=\frac{1-\sqrt{5}}{2} \frac{1}{\sqrt{L_{1} C_{1}}}, \omega_{3}=\frac{2}{\sqrt{L_{2} C_{2}}}$ and $\omega_{4}=0$.

