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Let’s write the components of this circuit as resistors with complex resis-
tance. Like this:

Ra = 2πfiL1

Rb = 2πfiL2

Rc =
1

2πfiC1

Rd =
1

2πfiC2
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Now, we can work with this circuit using Kirchhoff’s laws.
First, we need to determine, how many natural frequencies will there be.

We can use the fact that this number is the same as the number of degrees
of freedom of this system, because a system of N coupled oscillators has N
degrees of freedom (these describe the oscillators, while the couplings are
described by the oscillators’ states).

We need 4 loop currents (4 degrees of freedom) to describe this system.
We can view the circuit as a pyramid, for which, if we know the loop cur-
rents of 4 faces, we can determine the current of the 5th, and since every loop
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is drawn along the pyramid’s edges, it’s made by joining some of the faces
together (so its current is a superposition of these faces’ currents). These 4
(independent) linear equations, along with 4 (independent) equations for 1st
Kirchhoff law, allow us to determine all the currents flowing through edges.
So there will be 4 natural frequencies.

One of them is f = 0 (like, a DC, passing through a loop of inductors,
while there are constant charges on the capacitors, constant magnetic fluxes
so no voltage is induced across the inductors... yes, this is the plural to flux,
there’s no shorter form like fluci or whatever... and everything is constant).

In such situations, it’s wise to expect the frequencies to be a low and a
high one. Let’s investigate these 2 situations separately.

Let’s first assume the frequency f is small enough for

|Rc| � max (|Ra|, |Rb|, |Rd|)

so that the current flowing through the Rc components is negligible in com-
parison to all the other currents in the circuit. In such situation, we can cross
out the Rc components from the circuit, and get this:
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We can now imagine that one of the nodes is actually composed of 2 nodes,
connected with a perfectly conducting wire (which is basically a power source
with 0 potential difference) - we can also imagine that we cut the circuit at
a node and connect the cut points with a wire. So, we have a source (the
added wire) and a load connected to it, whose impedance is (when cutting
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point A, for example; the result doesn’t depend on our choice of the point to
cut, since all so-made circuits are equivalent)

Z = 2Ra+Rb+
1

1
Rb

+ 2
Rd

= 4πfiL1+2πfiL2+
1

1
2πfiL2

+ 2πfiC2

2

≈ 2πfiL2+
2πfiL2

1− 2π2f 2L2C2

At natural frequency, impedance of the load is 0 - the 2 points connected
with the wire must have the same potentials and how much current flows
out of one of them into the load, that much flows into the other one from
the load (and that much flows through the wire). If the current is non-zero
(which must be, or there is no current flowing anywhere in the circuit), we
need Z = 0 to get 0 potential difference. From this, we obtain (all operations
were equivalent)

1 = π2f 2L2C2

f =
1

π
√
L2C2

Originally, we used the assumption of large Rc, so we need to prove it
now. From the strong inequalities in the problem description, we already
know that |Ra| � |Rb|, |Rc| � |Rd|. So we only need to show that

|Rc| � |Rb|

we do a few (equivalent) operations

4π2f 2L2C1 � 1

4C1

C2

� 1

which is true (4 is a constant close to 1, so it does not affect a strong in-
equality). So we found one of the frequencies.

Now, we assume that the frequency is large enough, so that

|Rb| � max(|Ra|, |Rc|, |Rd|)

and therefore, we can cross out the 2 L2 inductors, and get a circuit (the left
C2 is not part of any circuit, so we ignore it)
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Its impedance is (here, for cutting at point C, for example)

Z = Ra +Rd +
1

1
Ra+Rc

+ 1
Rc

= 2πfiL1 +
1

2πfiC2

+
1

2πfiC1

1−4π2f2L1C1
+ 2πfiC1

which must be, for the same reasons, zero, from which we get

4π2f 2C1L1 −
C1

C2

=
1

1
1−4π2f2L1C1

+ 1
=

1− 4π2f 2L1C1

2− 4π2f 2L1C1

and using the C1 � C2 inequality (which, in the end, allows us to neglect C1

C2

from this equation’s leftmost side), we get

1− 12π2f 2C1L1 + 16π4f 4L2
1C

2
1 = 0

f 2 =
3±
√

5

8π2L1C1

=
1 + φ1,2

4π2L1C1

where φ1 is the golden cut and φ2 its conjugate).
Here, we get the last 2 solutions:

f =

√
1 + φ1

2π
√
L1C1

f =

√
1 + φ2

2π
√
L1C1

Once again, we need to show that |Rb| � |Rc| in both cases. We can also
write it as

4π2f 2L2C1 � 1
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(3 +
√

5)L2

2L1

= 2.6
L2

L1

� 1

(3−
√

5)L2

2L1

= 0.38
L2

L1

� 1

which, once again, follows from the inequality L2 � L1 and the fact that
multiplying it by a constant close to 1 doesn’t affect its validity.

It’s also possible to derive the general solution by changing 2 of the tri-
angles in the circuit (I think the best is to do it with L1 - C1 - C1 and L2 -
C2 - C2 triangles) to equivalent stars, which yields a much, much simpler to
compute (the 2 rules for series and parallel circuits are sufficient, no need for
diffs) circuit. I’m NOT going to try this.

P.S. A reverse way to determine all the loop currents from just 1st Kirch-
hoff law and 4 independent edge currents is also possible.

Instead of loop currents, we can also use node potentials / potential dif-
ferences. Since we’re not interested in exact values of node potentials (they
depend on our choice of reference zero potential), we can choose node E to be
0 potential, and only need to know potentials of the remaining four (which
are independent), relative to it. In other words, we only need 4 independent
potential differences (and using 2nd Kirchhoff law, can determine the rest),
which are our degrees of freedom.
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