

Assume that after the electron hits the positron, photon 1 deflects β angle and photon 2 deflects θ angle from the electron's original path. This way, $\beta+\theta=\alpha$.

The electron gains the energy $\Delta E=e \cdot U=k m_{0} c^{2}$. Therefore, its total energy is $E=(k+1) m_{0} c^{2}$.

And, it has the momentum (using energy-momentum relation):

$$
\begin{aligned}
E^{2} & =m_{0}{ }^{2} c^{4}+p^{2} c^{2} \\
(k+1)^{2} m_{0}^{2} c^{4} & =m_{0}^{2} c^{4}+p^{2} c^{2} \\
p^{2} c^{2} & =m_{0}^{2} c^{4}\left(k^{2}+2 k\right) \\
p & =m_{0} c \sqrt{k^{2}+2 k}
\end{aligned}
$$

When the electron hits the positron, the momentum and energy is conserved. The energy and the momentum of photon 1 and photon 2 are $E_{1}=h f_{1}$ and $E_{2}=h f_{2}$, and $p_{1}=\frac{h f_{1}}{c}$ and $p_{2}=\frac{h f_{2}}{c}$, respectively.

The equation of the conservation of momentum of the axis perpendicular to the original path of the electron:

$$
p=p
$$

$$
0=\frac{h f_{1}}{c} \sin \beta-\frac{h f_{2}}{c} \sin \theta
$$

$$
\begin{equation*}
f_{1} \sin \beta=f_{2} \sin \theta \tag{1}
\end{equation*}
$$

The equation of the conservation of momentum of the axis parallel to the original path of the electron:

$$
p=p
$$

$$
m_{0} c \sqrt{k^{2}+2 k}=\frac{h f_{1}}{c} \cos \beta+\frac{h f_{2}}{c} \cos \theta
$$

$$
\begin{equation*}
m_{0} c^{2} \sqrt{k^{2}+2 k}=h f_{1} \cos \beta+h f_{2} \cos \theta \tag{2}
\end{equation*}
$$

The equation of the conservation of the energy:

$$
\begin{align*}
E & =E \\
(k+1) m_{0} c^{2}+m_{0} c^{2} & =h f_{1}+h f_{2} \\
m_{0} c^{2}(k+2) & =h\left(f_{1}+f_{2}\right) \tag{3}
\end{align*}
$$

Substituting (3) into (2), and substitute (1) afterwards:

$$
\begin{aligned}
\left(f_{1}+f_{2}\right) \sqrt{k^{2}+2 k} & =\left(f_{1} \cos \beta+f_{2} \cos \theta\right)(k+2) \\
f_{2}\left(\frac{\sin \theta}{\sin \beta}+1\right) \sqrt{k^{2}+2 k} & =\left(f_{2} \frac{\sin \theta}{\sin \beta} \cos \beta+f_{2} \cos \theta\right)(k+2)
\end{aligned}
$$

$$
(\sin \theta+\sin \beta) \sqrt{k^{2}+2 k}=(\sin \theta \cos \beta+\cos \theta \sin \beta)(k+2)
$$

$$
(\sin \theta+\sin \beta) \sqrt{k^{2}+2 k}=\sin (\theta+\beta)(k+2)
$$

Using the relation $\beta+\theta=\alpha$, we can get:

$$
\begin{align*}
(\sin \theta+\sin \beta) \sqrt{k^{2}+2 k} & =\sin (\theta+\beta)(k+2) \\
(\sin (\alpha-\beta)+\sin \beta) \sqrt{k^{2}+2 k} & =(k+2) \sin \alpha \tag{4}
\end{align*}
$$

If we differentiate implicitly with respect to β :

$$
\begin{gathered}
(\sin (\alpha-\beta)+\sin \beta) \sqrt{k^{2}+2 k}=(k+2) \sin \alpha \\
{\left[\cos (\alpha-\beta)\left(\frac{d \alpha}{d \beta}-1\right)+\cos \beta\right] \sqrt{k^{2}+2 k}=(k+2) \cos \alpha \frac{d \alpha}{d \beta}}
\end{gathered}
$$

The implicit graph of the equation (4) >> using WolframAlpha. In this graph, $\alpha=B$ and $\beta=A$, and $k=1$.

The smallest possible angle of α will be the angle that $\frac{d \alpha}{d \beta}=0$ (look at the red circle on the graph).

$$
\begin{aligned}
{\left[\cos (\alpha-\beta)\left(\frac{d \alpha}{d \beta}-1\right)+\cos \beta\right] \sqrt{k^{2}+2 k} } & =(k+2) \cos \alpha \frac{d \alpha}{d \beta} \\
{[-\cos (\alpha-\beta)+\cos \beta] \sqrt{k^{2}+2 k} } & =0 \\
\cos (\alpha-\beta) & =\cos \beta
\end{aligned}
$$

The solutions for the above equations are $\alpha=0, \alpha=2 \beta$, etc. But if we examine the graph, the only correct solution is $\alpha=2 \beta$.

For $\alpha=2 \beta$,:

$$
\begin{aligned}
(\sin (\alpha-\beta)+\sin \beta) \sqrt{k^{2}+2 k} & =(k+2) \sin \alpha \\
\left(\sin \frac{\alpha}{2}+\sin \frac{\alpha}{2}\right) \sqrt{k^{2}+2 k} & =(k+2) \sin \alpha \\
2 \sin \frac{\alpha}{2} \sqrt{k^{2}+2 k} & =2(k+2) \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \\
2 \sin \frac{\alpha}{2}\left[\sqrt{k^{2}+2 k}-\cos \frac{\alpha}{2}(k+2)\right] & =0
\end{aligned}
$$

Thus:
$\sqrt{k^{2}+2 k}-\cos \frac{\alpha}{2}(k+2)=0$

$$
\begin{aligned}
\cos \frac{\alpha}{2} & =\frac{\sqrt{k^{2}+2 k}}{(k+2)} \\
\alpha & =2 \cos ^{-1}\left[\frac{\sqrt{k^{2}+2 k}}{(k+2)}\right]
\end{aligned}
$$

For $\mathrm{k}=1$:
$\alpha=2 \cos ^{-1}\left[\frac{\sqrt{k^{2}+2 k}}{(k+2)}\right]=2 \cos ^{-1}\left[\frac{\sqrt{3}}{3}\right]=1.91 \mathrm{rad}$

