
I will first introduce the concept of magnetic circuits, an ohm’s law equivalent for magnetism. 

First let’s make an analogy with electric circuits: 

 

𝑬 = −𝛁V  

𝑠𝑜, 𝑙𝑒𝑡   𝑯 = 𝛁𝐴 

𝑤𝑕𝑒𝑟𝑒 𝐴 𝑖𝑠 𝑡𝑕𝑒 magnetic 𝑠𝑐𝑎𝑙𝑎𝑟 potential 

For we to define “A”,    𝑯 ∙ 𝑑𝒍 = 0 , so we must define that a specific place/plane isn’t part of 

the system . 

In this problem, we may choose this place as the plane inside of the circular loop: 

 

 

 

Now we can define  

𝑯 = 𝛁𝐴 

Let’s continue the analogy. 

𝑉𝐴𝐵=  𝑬 ∙ 𝑑𝒍
𝐵

𝐴

 
𝑦𝑖𝑒𝑙𝑑𝑠
      𝐴𝐴𝐵=  𝑯 ∙ 𝑑𝒍

𝐵

𝐴

 

 

𝑱 = 𝜎𝑬   
𝑦𝑖𝑒𝑙𝑑𝑠
     𝑩 = 𝜇𝜇0𝑯 

 

𝐼 =   𝑱 ∙ 𝑑𝑺
𝑦𝑖𝑒𝑙𝑑𝑠
      𝜑 =   𝑩 ∙ 𝑑𝑺 

𝑉 = 𝐼𝑅  
𝑦𝑖𝑒𝑙𝑑𝑠
      𝐴 = 𝜑ℝ   ;  ℝ = 𝑟𝑒𝑙𝑢𝑐𝑡𝑎𝑛𝑐𝑒 

𝑅 =
𝐿

𝜎𝑆
 
𝑦𝑖𝑒𝑙𝑑𝑠
     ℝ =

𝐿

𝜇𝜇0𝑆
   ; 𝑆 = 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎  

 

𝑉𝐴𝐵=  𝑬 ∙ 𝑑𝒍
𝐵

𝐴
= 𝜀𝑚𝑓   

 

 

 A 

B 

Battery 



 

 

𝐴𝐴𝐵=  𝑯 ∙ 𝑑𝒍
𝐵

𝐴

= 𝐼 

 

 

 

If we have an inductor, with inductance L, we have:  𝐼/ℝ = 𝜑 = 𝐿 𝐼 
𝑦𝑖𝑒𝑙𝑑𝑠
      𝐿 = 1/ℝ 

 

Now let´s solve the problem. 

Let’s separate the problem in 2 cases: 

i) The diameter of the electric wire is approximately ‘d’ (L is small) 

ii) The diameter of the electric wire is λ <<  d (L is big) 

 

The first case: 

We may assume that all the flux that goes through the current loop will go through the 

ferromagnetic, because, neglecting the reluctance of the ferromagnetic  𝑑 ≫
𝑎

𝜇
  , passing 

through the ferromagnetic , the field line will go through  “d” in the air, against  at least “π d” if 

it  passed through  the air near the wire, 

which has a  bigger reluctance.  

𝐼 = 𝜑ℝ          𝜑 =
𝐼

ℝ
   

ℝ ≈
4𝑑

𝜋𝑎²𝜇0
  

𝜑 =  𝐼
𝜋𝑎²𝜇0

4𝑑
 

¹ 𝐸0 =
𝜑𝐼

2
=  𝐼²

𝜋𝑎²𝜇0 

8𝑑
 

 

The magnetic flux through the circular loop is constant, because it is made of a 

superconducting material. So the energy far away from the ferromagnetic is: 

A 

B 

Electric current loop 



𝐸1 =
𝐿𝐼²

2
=  

𝜑²

2𝐿
= 𝐼²

𝜋𝑎2𝜇0

8𝑑
 
𝜋𝑎2𝜇0

4𝑑𝐿
  

The work done is the difference of energy: 

𝑊 = ∆𝐸 = 𝐼2  
𝜋𝑎2𝜇0

8𝑑
  

𝜋𝑎2𝜇0

4𝑑𝐿
− 1 ≈ 𝐼2  

𝜋𝑎2𝜇0

8𝑑
  

𝜋𝑎2𝜇0

4𝑑𝐿
 = 𝐼2  

𝜋²𝑎4𝜇0²

32𝑑²𝐿
  

If we don’t say use  𝜇𝑑 ≫ 𝑎,  

 ℝ ≈
4𝑑

 𝜇0𝜋𝑎
2

 +
 8𝑎

𝑎2𝜇𝜇0 
=

 8𝜋𝑎 + 4𝑑𝜇

𝑎2𝜋𝜇𝜇0 
 

 𝐸0 =
𝜑𝐼

2
=
𝐼2

2

𝑎2𝜋𝜇𝜇0  

8𝜋𝑎 + 4𝑑𝜇
 

𝐸1 =
𝐿𝐼²

2
=  

𝜑²

2𝐿
=
𝐼2

2

𝑎2𝜋𝜇𝜇0  

8𝜋𝑎 + 4𝑑𝜇
 

𝑎2𝜋𝜇𝜇0  

𝐿(8𝜋𝑎 + 4𝑑𝜇)
  

𝑊 = ∆𝐸 =
𝐼2

2

𝑎2𝜋𝜇𝜇0  

8𝜋𝑎 + 4𝑑𝜇
 

𝑎2𝜋𝜇𝜇0  

𝐿(8𝜋𝑎 + 4𝑑𝜇)
− 1  

 

 

The second case: 

The diameter of the electric wire λ << d: 

 

 

Now just a little part of the magnetic flux will go through the ferromagnetic, because the 

reluctance of this path  ℝ ≈
4𝑑

𝜋𝑎²𝜇0
≫

1

𝐿
 , because d >>π λ 

The most part of the magnetic flux will through a region really near the wire. 

  

 

 

 

The reluctance of the path that doesn’t pass through the ferromagnetic will be  

ℝ0 = 1/𝐿  



This is because most of the flux will pass in the region really near the wire, the region with the 

least reluctance, so the reluctance of this is small volume is ≈1/L 

ℝ =
1

𝐿
=
𝜑

𝐼
          ℝ0 =

𝜑0

𝐼
≈
𝜑

𝐼
=

1

𝐿
 

So we will have a parallel association or reluctances, the reluctance of the path that don’t pass 

through the ferromagnetic, and of the path that does pass. 

The reluctance of the path that passes through the ferromagnetic won’t change much because 

of this: 

the surface area of this new path, will be  

𝜋𝑎2

4
−  𝑆, 𝑤𝑕𝑒𝑟𝑒 𝑆 𝑖𝑠 𝑡𝑕𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡𝑕𝑖𝑠 𝑛𝑒𝑤 𝑝𝑎𝑡𝑕. 

𝐵𝑢𝑡 𝑆~ d² ≪ a², 𝑠𝑜 𝑡𝑕𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑑𝑜𝑒𝑠𝑛′𝑡𝑐𝑕𝑎𝑛𝑔𝑒, 𝑎𝑛𝑑 𝑛𝑒𝑖𝑡𝑕𝑒𝑟 𝑑𝑜𝑒𝑠 𝑡𝑕𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒. 

The reluctance of one path is ∶
1

𝐿
, 𝑎𝑛𝑑 𝑡𝑕𝑒 𝑟𝑒𝑙𝑢𝑐𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑜𝑡𝑕𝑒𝑟 𝑝𝑎𝑡𝑕 𝑖𝑠 ≈

4𝑑

𝜋𝑎2𝜇0
 

Let ℝ𝑒𝑞𝑢 𝑖  is the equivalent reluctance of the system. 

1

ℝ𝑒𝑞𝑢𝑖
=

1

ℝ0
+

1

ℝ1
= 𝐿 +

𝜋𝑎2𝜇0

4𝑑
=  

4𝐿𝑑 + 𝜋𝑎2𝜇0

4𝑑
 

ℝ𝑒𝑞𝑢𝑖 =   
4𝑑

4𝐿𝑑 + 𝜋𝑎2𝜇0
 

The flux will be: 

𝜑 =
𝐼

ℝ
= 𝐼   

4𝐿𝑑 + 𝜋𝑎2𝜇0

4𝑑
  

The energy is: 

𝐸0 =
𝜑𝐼

2
=  𝐼²   

4𝐿𝑑 + 𝜋𝑎2𝜇0

8𝑑
  

The energy far away from the ferromagnetic is: 

𝐸1 =
𝐿𝐼²

2
=  

𝜑²

2𝐿
= 𝐼²   

4𝐿𝑑 + 𝜋𝑎2𝜇0

8𝑑
  

4𝐿𝑑 + 𝜋𝑎2𝜇0

4𝐿𝑑
   

The work done is the difference of energy: 

𝑊 = ∆𝐸 =  𝐼²   
4𝐿𝑑 + 𝜋𝑎2𝜇0

8𝑑
  

4𝐿𝑑 + 𝜋𝑎2𝜇0

4𝐿𝑑
− 1 =  𝐼²  

𝐿

2
+
𝜋𝑎2𝜇0

8𝑑
  

𝜋𝑎2𝜇0

4𝐿𝑑
 

= 𝐼2  
𝜋2𝑎4𝜇0

2

32𝐿𝑑
+
𝜋𝑎2𝜇0

8𝑑
  



And as we can see, the work is always positive! If L ≫
𝜋𝑎2𝜇0

4
  ,   

𝑊 ≈ 𝐼2  
𝜋𝑎2𝜇0

8𝑑
  

If we don’t use 𝜇𝑑 ≫ 𝑎,  

ℝ1  ≈
4𝑑

 𝜇0𝜋𝑎
2

 +
 8𝑎

𝑎2𝜇𝜇0 
=

 8𝜋𝑎 + 4𝑑𝜇

𝑎2𝜋𝜇𝜇0 
  

1

ℝ𝑒𝑞𝑢𝑖
=

1

ℝ0
+

1

ℝ1
= 𝐿 +

𝑎2𝜋𝜇𝜇0 

 8𝜋𝑎 + 4𝑑𝜇
=  

𝐿(8𝜋𝑎 + 4𝑑𝜇) + 𝑎2𝜋𝜇𝜇0 

8𝜋𝑎 + 4𝑑𝜇
 

 

ℝ𝑒𝑞𝑢𝑖 =   
8𝜋𝑎 + 4𝑑𝜇

𝐿(8𝜋𝑎 + 4𝑑𝜇) + 𝑎2𝜋𝜇𝜇0 
 

𝜑 =
𝐼

ℝ
= 𝐼  

𝐿(8𝜋𝑎 + 4𝑑𝜇) + 𝑎2𝜋𝜇𝜇0 

8𝜋𝑎 + 4𝑑𝜇
  

𝐸0 =
𝜑𝐼

2
=
𝐼2

2
 
𝐿(8𝜋𝑎 + 4𝑑𝜇) + 𝑎2𝜋𝜇𝜇0 

8𝜋𝑎 + 4𝑑𝜇
 =

𝐼2

2
 
𝐿(8𝜋𝑎 + 4𝑑𝜇) + 𝑎2𝜋𝜇𝜇0 

8𝜋𝑎 + 4𝑑𝜇
  

𝐸1 =
𝐿𝐼²

2
=  

𝜑²

2𝐿
=
𝐼2

2
 
𝐿(8𝜋𝑎 + 4𝑑𝜇) + 𝑎2𝜋𝜇𝜇0 

8𝜋𝑎 + 4𝑑𝜇
  1 +

𝑎2𝜋𝜇𝜇0 

𝐿(8𝜋𝑎 + 4𝑑𝜇)
   

∆𝐸 =
𝐼2

2
 
𝐿 8𝜋𝑎 + 4𝑑𝜇 + 𝑎2𝜋𝜇𝜇0 

8𝜋𝑎 + 4𝑑𝜇
  

𝑎2𝜋𝜇𝜇0 

𝐿 8𝜋𝑎 + 4𝑑𝜇 
  

𝑊 = ∆𝐸 =
𝐼2

2
 

𝑎2𝜋𝜇𝜇0 

 8𝜋𝑎 + 4𝑑𝜇 
+

𝑎4𝜋2𝜇2𝜇0 ²

𝐿 8𝜋𝑎 + 4𝑑𝜇 2  

 If L ≫
𝜋𝑎2𝜇0

4
  ,   

𝑊 ≈
𝐼2

2
 

𝑎2𝜋𝜇𝜇0 

 8𝜋𝑎 + 4𝑑𝜇 
  

 

Now let´s try the solutions with some numbers, knowing that the inductance of a circular loop 

is: 

𝐿 =  𝜇0 

𝑎

2
 ln⁡(

4𝑎

λ
− 2 +

1

4
) 

If  

𝜇 = 2000 , 𝑎 = 50𝑐𝑚, 𝑑 = 1𝑐𝑚, µ0 =  4π × 10−7  
V · s

A · m
, 𝐼 = 1 𝐴 

http://en.wikipedia.org/wiki/Volt
http://en.wikipedia.org/wiki/Second
http://en.wikipedia.org/wiki/Second
http://en.wikipedia.org/wiki/Ampere


λ = 1 cm 

𝐿 = 1.88 ∙ 10−6  𝐼𝑆  

 

𝑊 = ∆𝐸 =
𝐼2

2

𝑎2𝜋𝜇𝜇0  

8𝜋𝑎 + 4𝑑𝜇
 

𝑎2𝜋𝜇𝜇0  

𝐿 8𝜋𝑎 + 4𝑑𝜇 
− 1 = 1.10 ∙ 10−4𝐽 

𝑊 = ∆𝐸 =
𝐼2

2
 

𝑎2𝜋𝜇𝜇0 

 8𝜋𝑎 + 4𝑑𝜇 
+

𝑎4𝜋2𝜇2𝜇0 ²

𝐿 8𝜋𝑎 + 4𝑑𝜇 2 = 1.32 ∙ 10−4𝐽 

A difference of  20% 

Now with  

λ = 0,0005 cm = 0.005mm = 5μm 

 

𝐿 = 3.8 ∗ 10−6 (𝐼𝑆) 

using 

 

𝑊 = ∆𝐸 =
𝐼2

2

𝑎2𝜋𝜇𝜇0  

8𝜋𝑎 + 4𝑑𝜇
 

𝑎2𝜋𝜇𝜇0  

𝐿 8𝜋𝑎 + 4𝑑𝜇 
− 1 = 4.9 ∙ 10−5𝐽 

But using: 

 

𝑊 = ∆𝐸 =
𝐼2

2
 

𝑎2𝜋𝜇𝜇0 

 8𝜋𝑎 + 4𝑑𝜇 
+

𝑎4𝜋2𝜇2𝜇0 ²

𝐿 8𝜋𝑎 + 4𝑑𝜇 2 = 7.0 ∙ 10−5𝐽 

 

A difference of 42% from the first value. 

As we can see, the smaller the diameter of the wire, the bigger the difference. 

 

But this difference is big just for really small values of λ so it can be neglected almost all the 

times. 

 

 

 

 



 

 

¹ The proof that the energy is equal to 
𝜑∙𝐼

2
  from the fact that the energy is   𝐵𝐻 𝑑𝑉 is below. 

Let’s consider the magnetic field of an arbitrary loop with current I . 

 

 

 

 

 Let’s divide the entire field in small tube, whose generatrices are the field 

lines of B. In the figure is shown one of them.  It’s energy is BH/2 dl dS. 

Let’s find the energy in the volume of the entire tube. The flux d𝜑 = 𝐵 𝑑𝑆 through the tube 

cross section is constant along the tube, so it can be taken out of the integral: 

𝑑𝐸 =
𝑑𝜑

2
 𝐻 𝑑𝑙 = 𝐼 

𝑑𝜑

2
 

Now, summing the energy of all elementary tubes: 

𝐸 =
1

2
𝐼  𝑑𝜑 =  

𝐼𝜑

2
 

This formula can only be applies when the dependence of B vs H is linear, in other words, 

when 𝐵 = 𝜇𝜇0𝐻, which is the case of this problem. 
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