Results after Problem 6
The list of the contest leaders after the sixth problem:
Points |
|
Name |
Country |
School |
Physics teacher |
15,578 |
|
Szabó Attila |
Hungary |
Leőwey Klára High School, Pécs |
Simon Péter, Dr Kotek László |
14,129 |
|
Nikita Sopenko |
Russia |
Lyceum No.14, Tambov |
Valeriy Vladimirovich Biryukov |
9,8178 |
|
Lars Dehlwes |
Germany |
Ohm-Gymnasium Erlangen |
Martin Perleth |
9,499 |
|
Ilie Popanu |
Moldova |
Lyceuum "Orizont", Chisinau |
Igor Evtodiev |
8,856 |
|
Jakub Šafin |
Slovak |
Pavol Horov Secondary, Michalovce |
Jozef Smrek |
6,9689 |
|
Ion Toloaca |
Moldova |
liceul "Mircea Eliade" |
Igor Iurevici Nemtov; Andrei Simboteanu |
6,8933 |
|
Ivan Tadeu Ferreira Antunes Filho |
Brazil |
Colégio Objetivo, Lins, São Paulo |
|
6,4407 |
|
Dinis Cheian |
Moldova |
Lyceuum "Orizont", Chisinau |
Igor Evtodiev |
6,203 |
|
Alexandra Vasileva |
Russia |
Lyceum "Second School", Moscow |
A.R. Zilberman, G.F. Lvovskaya, G.Z. Arabuly |
6,1968 |
|
Jakub Supeł |
Poland |
14th School of Stanisław Staszic, Warsaw |
Włodzimierz Zielicz |
6,0844 |
|
Cristian Zanoci |
Moldova |
Lyceuum "Orizont", Chisinau |
Igor Evtodiev |
5,8911 |
|
Papimeri Dumitru |
Moldova |
Lyceuum "Orizont", Chisinau |
Igor Evtodiev |
5,6695 |
|
Brahim Saadi |
Algeria |
Preparatory School for Science & Technology of Annaba |
Derradji Nasreddine |
5,5644 |
|
Kohei Kawabata |
Japan |
Nada High School |
|
4,7997 |
|
Nadezhda Vartanian |
Russia |
Smolensk Pedagogical Lyceum |
Mishchenko Andrei Anatolievich |
3,7517 |
|
Luís Gustavo Lapinha Dalla Stella |
Brazil |
Colégio Integrado Objetivo, Barueri, Brazil |
Ronaldo Fogo |
3,4205 |
|
Bharadwaj Rallabandi |
India |
Narayana Jr. College, Basheer Bagh, India |
Vyom Sekhar Singh |
3,2075 |
|
Petar Tadic |
Montenegro |
Gimnazija ,,Stojan Cerovic" Niksic |
Ana Vujacic |
2,5937 |
|
Mikhail Shirkin |
Russia |
Gymnasium of Ramenskoye |
Petrova Elena Georgyevna |
2,374 |
|
Lorenzo Comoglio |
Italy |
Liceo Scientifico del Cossatese e Valle Strona |
Chiara Bandini |
2,2747 |
|
Kai-Chi Huang |
Taiwan |
Taipei Municipal Chien-Kuo High School |
Shun-Ju Liu |
2,1862 |
|
Ng Fei Chong |
Malaysia |
SMJK Chung Ling, Penang |
|
2,1 |
|
Krzysztof Markiewicz |
Poland |
XIV Highschool in Warsaw |
Robert Stasiak |
2 |
|
Jaan Toots |
Estonia |
Tallinn Secondary Science School |
Toomas Reimann |
1,5449 |
|
Selver Pepić |
Bosnia-Herzegovina |
Fourth Gymnasium Ilidža, Sarajevo |
Rajfa Musemić |
1,4641 |
|
Bruno Bento Barros de Araújo |
Brazil |
Ari de Sá Cavalcante |
Edney Melo |
1,4641 |
|
Hideki Yukawa |
Japan |
Nada high school |
|
1,21 |
|
Midhul Varma |
India |
Vidyadham Junior, Hyderabad |
Manikanta Kumar |
1 |
|
Adrian Nugraha Utama |
Indonesia |
SMA Sutomo 1 Medan |
Manaek Nababan, Salim Sabtu |
1 |
|
Teoh Yee Seng |
Malaysia |
SMJK HENG EE,Penang; SMJK CHUNG LING,Penang |
|
1 |
|
José Luciano de Morais Neto |
Brazil |
Colégio Ari de Sá Cavalcante |
Leonardo Bruno |
1 |
|
Task Ohmori |
Japan |
Nada High School |
T.Hamaguchi |
1 |
|
Sharad Mirani |
India |
Prakash Higher Secondary School |
Ruchi Sadana, Sunil Sharma |
1 |
|
Lev Ginzburg |
Russia |
Advanced Educational Scientific Center, MSU, Moscow |
I.V. Lukjanov, S.N. Oks |
0,9801 |
|
Mekan Toyjanow |
Turkmenistan |
Turgut Ozal Turkmen Turkish High School |
Halit Coshkun |
0,9 |
|
Jôhanes Sebástian Paiva Melo |
Brazil |
Colégio Ari de Sá Cavalcante |
Eduardo Kilder; Italo Reann |
0,81 |
|
Andrew Zhao |
United States |
Webster Thomas High School |
Dykstra, William |
0,81 |
|
Meylis Malikov |
Turkmenistan |
Turgut Ozal Turkmen Turkish High School |
Halit Coshkun |
0,81 |
|
Liara Guinsberg |
Brazil |
Colégio Integrado Objetivo, São Paulo, Brazil |
Ronaldo Fogo |
0,792 |
|
Ulysse Lojkine |
France |
Lycée Henri IV, Paris |
M. Lacas |
0,72 |
|
Rajat Sharma |
India |
Pragati Vidya Peeth,Gwalior |
Mr. Rakesh Ranjan |
Points for Problem No 6:
2,8531 |
|
Szabó Attila |
2,5937 |
|
Nikita Sopenko |
2,2747 |
|
Kai-Chi Huang |
2,2295 |
|
Lars Dehlwes |
1,7538 |
|
Kohei Kawabata |
1,4641 |
|
Bruno Bento Barros de Araújo |
1,331 |
|
Ilie Popanu |
1,3045 |
|
Petar Tadic |
1,284 |
|
Alexandra Vasileva |
1,1556 |
|
Jakub Šafin |
1,1 |
|
Ion Toloaca |
1 |
|
Adrian Nugraha Utama |
1 |
|
Jakub Supeł |
1 |
|
Cristian Zanoci |
1 |
|
Nadezhda Vartanian |
1 |
|
José Luciano de Morais Neto |
0,9801 |
|
Selver Pepić |
0,9 |
|
Dinis Cheian |
0,9 |
|
Jôhanes Sebástian Paiva Melo |
0,81 |
|
Ivan Tadeu Ferreira Antunes Filho |
0,81 |
|
Andrew Zhao |
0,5648 |
|
Ng Fei Chong |
0,5134 |
|
Lorenzo Comoglio |
Correct solutions (ordered according to the arrival time; best solutions in bold):
1. Szabó Attila (Hungary)
2. Nikita Sopenko (Russia)
3. Lars Dehlwes (Germany)
4. Kohei Kawabata (Japan)
5. Kai-Chi Huang (Taiwan)
6. Petar Tadic (Montenegro)
7. Bruno Bento Barros de Araújo (Brazil)
8. Ilie Popanu (Moldova)
9. Selver Pepić (Bosnia-Herzegovina)
10. Ion Toloaca (Moldova)
11, Nadezhda Vartanian (Russia)
12. José Luciano de Morais Neto (Brazil)
13. Jakub Šafin (Slovak)
14. Ivan Tadeu Ferreira Antunes Filho (Brazil)
15. Jôhanes Sebástian Paiva Melo (Brazil)
16. Adrian Nugraha Utama (Indonesia)
17. Andrew Zhao (United States)
18. Ng Fei Chong (Malaysia)
19. Jakub Supeł (Poland)
20. Alexandra Vasileva (Russia)
21. Lorenzo Comoglio (Italy)
22. Cristian Zanoci (Moldova)
23. Dinis Cheian (Moldova)
(The list is ordered according to the arrival time)
Overall number of registered participants: 258 from 44 countries.
—————-
The following hints were given for the last week. It is clear that the charges can be only on the surface of the metal: on the spherical part, and on the two adjacent surfaces of the plane cut (volume charges inside the metal would create an electric field therein). Note also that at each point of the cut, the charges at the two sides need to compensate each other (uncompensated charge would create an electric field in the metal near the cut). You need to figure out, how the charges need to be distributed on these surfaces to ensure that the field will be potential (whichever way an imaginary test charge moves from one piece of the sphere to another one, the work done by the electric field should remain the same). Also, the electric field created by the charges on the spherical surfaces should cancel out inside the region occupied by the metal.
The following methods can be useful: study the Gauss law for a small volume near the spherical surface to express the electric field outside the sphere via the surface charge density at that location; study the circulation theorem for a small contour near the surface (but outside the sphere): near the surface, the electric field is perpendicular to the surface (ie. radial), so that the tangential segments of the contour give no contribution to the circulation, which makes it possible to draw useful conclusions regarding the behaviour of the radial field (about the dependence on the tangential coordinate).
|